There are many kinds of ships, each with its own acoustic signature. The sound intensity of a ship depends on several parameters such as:

- Type and size of propulsion system
- Hull and speed
- Age and propulsion system
- Size and type of vessel
- Propulsion system
- Hull flow
- Machinery

SOURCES

IMPACTS

- Flight of prey
- Stress & disorientation
- Masking of communication signals

The sound intensity of a ship depends on several parameters such as type and size of propulsion system, hull, and speed.
It already exists!

Port of Vancouver EcoAction Programme

Since 2017, this programme has provided incentive measures for cargo and cruise ships that are the most quiet; they are rewarded with discounted harbour dues on arrival at the Port of Vancouver.

A HOT TOPIC FOR THE FRENCH MARITIME SECTOR

- The Blue Charter of Armateurs de France requires its signatories to contribute to noise reduction.
- French shipowners carry out acoustic signature measurements on their ships and invest in research and development concerning the reduction of propeller noise and the isolation of machinery.

MOBILISATION OF STAKEHOLDERS

Canada is very active both domestically and at the international level in efforts to reduce the noise of maritime traffic. Canada spearheads the subject within the International Maritime Organization (IMO).

The European Union tackled the subject of underwater noise in its 2008 Marine Strategy Framework Directive (MSFD) and endorses, with the support of France, Canada’s initiative at IMO.

The French State implements the MSFD by raising stakeholder awareness regarding underwater noise reduction objectives and measures for each maritime coastline.

Reducing ship speed
Lowering the speed by a few knots

Reducing noise from propellers
Using innovative propellers to avoid cavitation

Reducing noise from ship machinery
Reducing the transmission of vibrations by insulating engines

Improving hull design & maintenance
Optimising the shape of hulls to limit flow turbulence

SOLUTIONS

Reducing the transmission of vibrations by insulating engines

Lowering the speed by a few knots

Reducing noise from propellers

Optimising the shape of hulls to limit flow turbulence

Improving hull design & maintenance

Reducing noise from ship machinery

Using innovative propellers to avoid cavitation

Reducing the transmission of vibrations by insulating engines

Reducing the transmission of vibrations by insulating engines

Optimising the shape of hulls to limit flow turbulence

Improving hull design & maintenance

Reducing noise from ship machinery

Using innovative propellers to avoid cavitation

Reducing the transmission of vibrations by insulating engines